Heizen im Winter mit Sonnenwärme über eine Parabolspiegelheizung-Hoyer, Berechnungen und Beurteilung
Heizen im Winter mit Sonnenwärme über eine Parabolspiegelheizung-Hoyer, Berechnungen und Beurteilung
- Details
- Geschrieben von: Eric Hoyer
- Kategorie: Heizen im Winter mit Sonnenwärme über eine Parabolspiegelheizung-Hoyer, Berechnungen und Beurteilung
Heizen im Winter mit Sonnenwärme über eine
Parabolspiegelheizung-Hoyer, Berechnungen
und Beurteilung
14.08.2024 11.08.2024 3490 3435
Hier wird eine meiner Solarsysteme-Hoyer mit der Parabolspiegelheizung-Hoyer
im Winterhalbjahr dargestellt, die z. B. in unterschiedlichen Feststoffspeichern-Hoyer
optimiert umverteilt nach Temperaturen zu den Jahreszeiten, hier im Winterhalbjahr
berechnet werden.
Die Nutzung wird hier von Bürgern und seinen Häusern ausgegangen, Gewerbe und
Industrie ist auf meinen anderen Seiten dargestellt worden.
Der Reststrom wird aus den Gemeinden eigenen und Bürger beteiligten dezentralen
natürlichen-Energiezentren-Hoyer
in extremen Wintern bezogen. Siehe dazu Diagramm 5.
--------------------------------------------------------------------------------
03.03.2024 13:22 Uhr – 02:59 min
Zuschauer fragen Experten Sind Wärmepumpen Geldfresser?
------------------------------------------------------------------------------------------------------------------------
Hier kommt es darauf an, wie der Bürger die Sonnenwärme über Parabolspiegelheizung-Hoyer
speichert und ob er das Speichervolumen ausreichend z. B. in der Unterteilung von einem
Hauptspeicher und einem der z. B. die mehr niedrigen Temperaturen von z. B. 200 bis 500 °C,
getrennt speichert. Denn man kann einen heißen Speicher mit 700 bis 900 °C nicht mit 200 bis
500 °C aufheizen, sondern man hat einen kleineren Speicher, der diese Temperaturen übernimmt.
Diese Unterteilung ist auch für die Monate Nov. bis Feb. wichtig. Hinweis: im Jan. und Feb. werden
wesentlich höhere Temperaturen mit einem Parabolspiegel erreicht, als man angenommen hat.
Diese haben Forschungen in einem anderen Zusammenhang mit Erforschungen bei chemischen
Stoffen erbracht.
Was mich wundert ist, wenn man bedenkt in einem Raum hinter den Fenstern können im Januar
und Februar im Winter bei klarem Wetter 15 bis 25 °C ergeben, so müsste sich dies mit einem
Parabolspiegel von 3 m oder 2 dieser oder für ein Gewerbe einer oder mehrere mit 7 m
berechnen lassen.
Hierzu habe ich lediglich die Berechnungen von ChatGPT vornehmen lassen, alle Erfindungen und Verfahren
sind von mir, weil ich keine Förderung und Hilfe von der Regierung noch von anderen
Förderern bisher erhalten habe.
Damit Sie erfahren, wie offensichtlich die Hersteller darüber denken, werde ich hier einen Kommentar
eines Fremden hier einbringen :
-------------------------------------------
Sie haben eine sehr gute Anlage entwickelt. Das Projekt ist sehr gut nachvollziehbar. Die Sache hat nur einen Haken.
Die Photovoltaikindustrie will das nicht.
Ebenso die Wärmepumpenhersteller werden alles tun um zu verhindern
dass ihr Projekt im großen Stil umgesetzt wird.
-----------------------------------------------------------------
So, nun denken Sie mal weiter nach, was hier in Deutschland abläuft! Weder hat die Politik eine
Lösung noch andere, wo angeblich Fachleute eine sehr teure erneuerbare Energiewende so
umstellen, damit Profite für diese Gruppe herausspringen.
Damit die Wintersonnenwärme über meine Solarsystem-Hoyer zielgerichtet genutzt werden
können, habe ich meine Daten von ChatGPT prüfen lassen.
Eric Hoyer
11.08.2024
Hier die Unterhaltung und Fragestellung und Berechnungen mit ChatGPT
--------------------------------------------------------------------------------------------------------
Guten Morgen! Ich habe bei der Unterteilung von Temperaturen mit der Sonnenwärme in verschiedene Feststoffspeicher überlegt, - diese habe ich schon seit Jahren so beschrieben muss ein wirkungsvolle Unterteilung stattfinden - man müsste diese Temperaturen ausrechnen können, z. B. wenn im Januar oder Februar, die Temperatur im Raum 15 bis 25 °C erreicht werden. Daher bitte ich ChatGPT diese Werte zu errechnen. Hier der Text:
Der Reststrom wird aus den Gemeinden eigenen und Bürger beteiligten dezentralen natürlichen-Energiezentren-Hoyer in extremen Wintern bezogen.
Hier kommt es darauf an, wie der Bürger die Sonnenwärme über Parabolspiegelheizung-Hoyer speichert und ob er das Feststoffspeichervolumen ausreichend z. B. in der Unterteilung von einem Hauptspeicher und einem der z. B. die mehr niedrigen Temperaturen von z. B. 200 bis 500 °C, getrennt speichert. Denn man kann einen heißen Speicher mit 700 bis 900 °C nicht mit 200 bis 500 °C aufheizen, sondern man hat einen kleineren Speicher, der diese Temperaturen übernimmt.
Diese Unterteilung ist auch für die Monate Nov. bis Feb. wichtig. Hinweis: im Jan. und Feb. werden wesentlich höhere Temperaturen mit einem Parabolspiegel erreicht, als man angenommen hat.
Diese haben Forschungen in einem anderen Zusammenhang mit Erforschungen bei chemischen Stoffen erbracht.
Was mich wundert ist, wenn man bedenkt in einem Raum hinter den Fenstern können im Januar und Februar im Winter bei klarem Wetter 15 bis 25 °C ergeben, so müsste sich dies mit einem Parabolspiegel von 3 m oder 2 dieser oder für ein Gewerbe einer oder mehrere mit 7 m berechnen lassen. Um bei der Heizung des Hauses zu bleiben, ist also wichtig, wie man die erzielbaren Temperaturen mit dem Parabolspiegel sofort nutzt oder speichert, und zwar, auch wenn geringere Temperaturen erreicht werden. Eric Hoyer, 11.08.2024,05:58 h.
-------------------------------------------------------------------------------------------------------------------------------------------------------
Guten Morgen! Ihr Ansatz, die Temperaturen zu berechnen, die durch Sonnenwärme in einem Raum mithilfe eines Parabolspiegels im Winter erreicht werden können, ist sehr interessant. Um dies zu berechnen, sollten wir einige physikalische Überlegungen anstellen.
Physikalische Grundlagen
Ein Parabolspiegel fokussiert Sonnenlicht auf einen Punkt, wodurch die Energie in einem kleinen Bereich konzentriert wird. Diese konzentrierte Energie kann dann verwendet werden, um einen Feststoffspeicher zu erhitzen. Die erreichbare Temperatur hängt von mehreren Faktoren ab:
- Spiegeldurchmesser (z. B. 3 m oder 7 m)
- Einstrahlungswinkel und Intensität der Sonne
- Effizienz des Parabolspiegels
- Verluste durch Reflexion und Absorption
- Umgebungstemperatur und Wärmeverluste
Grundlegende Berechnungen
Um eine Abschätzung vorzunehmen, wie hoch die Temperatur in einem Raum oder Feststoffspeicher erreicht werden kann, muss die von der Sonne bereitgestellte Energiemenge berechnet werden.
-
Sonneneinstrahlung: Im Winter beträgt die solare Einstrahlung in Deutschland im Durchschnitt etwa 300 W/m² bei klarem Himmel.
-
Gesammelte Energie: Die vom Parabolspiegel gesammelte Energie (P) lässt sich durch die Fläche des Spiegels (A) und die Einstrahlung (I) berechnen:
P=A⋅I⋅ηP = A \cdot I \cdot \etawobei η\eta die Effizienz des Systems ist.
-
Fläche des Parabolspiegels: Für einen Parabolspiegel mit einem Durchmesser von 3 m beträgt die Fläche:
A=π⋅(d2)2=π⋅(3 m2)2≈7,07 m2A = \pi \cdot \left(\frac{d}{2}\right)^2 = \pi \cdot \left(\frac{3 \text{ m}}{2}\right)^2 \approx 7,07 \text{ m}^2Für einen Parabolspiegel mit 7 m Durchmesser beträgt die Fläche:
A=π⋅(7 m2)2≈38,48 m2A = \pi \cdot \left(\frac{7 \text{ m}}{2}\right)^2 \approx 38,48 \text{ m}^2 -
Gespeicherte Wärmeenergie: Wenn die gesammelte Energie in einem Feststoffspeicher gespeichert wird, kann die Temperaturerhöhung (ΔT\Delta T) des Speichermaterials durch die gespeicherte Energie (Q) berechnet werden:
Q=m⋅c⋅ΔTQ = m \cdot c \cdot \Delta Twobei mm die Masse des Speichermaterials und cc die spezifische Wärmekapazität ist.
Spezielle Betrachtungen für Januar und Februar
Die Aussage, dass im Januar und Februar höhere Temperaturen erreicht werden, basiert vermutlich auf den klareren Wetterbedingungen und der besseren Effizienz des Parabolspiegels in diesen Monaten. Die Temperatur in einem Raum kann bei klarem Wetter tatsächlich zwischen 15 und 25 °C liegen, besonders bei direkter Sonneneinstrahlung.
Um diese Temperaturen genau zu berechnen, bräuchten wir detaillierte Informationen über:
- Den genauen Standort (um den Sonnenstand und die solare Einstrahlung zu bestimmen)
- Wärmeverluste des Systems
- Materialeigenschaften des Feststoffspeichers
Wenn Sie konkrete Werte berechnen möchten, kann ich Ihnen dabei helfen, spezifische Szenarien durchzurechnen.
Zusammenfassung
Es ist möglich, dass ein Parabolspiegel mit einem Durchmesser von 3 m oder mehr in der Lage ist, im Winter Temperaturen von 15 bis 25 °C in einem Raum zu erzeugen oder diese Wärme in einem Feststoffspeicher zu speichern. Der entscheidende Faktor ist die Effizienz der Energieumwandlung und Speicherung. Eine genaue Berechnung würde jedoch erfordern, dass wir spezifische Parameter wie Materialeigenschaften und den genauen Standort berücksichtigen.
--------------------------------------------------------
Einen Moment, die im Diagramm 1 gezeigten Vorgänge sind von mir Eric Hoyer erfunden und mit der Kugelheizung-Hoyer realisiert umgesetzt worden. Diese Vorgänge, die über einen Kreislauf mit z. B. dunklen Stahlkugeln entsprechend der für diese Anwendung geeigneten Größe benutzt wird, hängt wiederum von der Verwendung und Zweck ab. Kann z. B. bei 5 cm Stahlkugeln liegen. Selbst wenn im Winter nur 4 Stunden die Sonne in meinem Solarenergieraum-Hoyer möglich sind, sollte es rechnerisch ein Mittel für diese Zeit pro Tag möglich sein. Ich habe erlebt, nachdem es tagelange geschneit hat, war es eine Woche schönes klares Wetter. Also rechne ich z.B. pro Monat Okt. mit 12 Tage und 25 °C; Nov. 7 Tage mit Sonnenschein, und 15 °C ; Dez. mit 8 Tagen und 19 °C; Jan. mit 4 Tagen und 15 °C; Feb. mit 7 Tagen und 25 °C; , März mit ca. 14 Tagen 30 °C; April 10 Tage, also 7 Monate, die ich auch in meinen Berechnungen vorher ausgegangen bin, ohne diese genau zu unterteilen wie heute. Achtung, die Temperatur im Kugelkreislauf im Diagramm 1, im Kugellager 1 was über dem warmen Feststoffspeicher positioniert ist, hat immer die höchste Temperatur, die im Feststoffspeicher als höchste die vorhanden ist. Es ist daher nicht die Umgebungstemperatur wesentlich, sondern die im oberen Teil der Feststoffspeicher vorhanden ist. Daher werden die hohen Temperaturen im Brennpunkt des Parabolspiegels zwar mit Verlusten einhergehen, aber die sind nicht von Bedeutung. Eric Hoyer, 11.08.2024.
------------------------------------------------------------------------------------------------------------------------------------------------------------
Ihre Erfindung und die beschriebenen Vorgänge, insbesondere die Nutzung von Stahlkugeln in einem Kugelkreislauf zur Speicherung von Sonnenenergie, sind sehr interessant und innovativ. Das System, das Sie mit der „Kugelheizung-Hoyer“ entwickelt haben, scheint eine effiziente Methode zur Speicherung und Nutzung von Sonnenwärme zu sein, insbesondere in den Wintermonaten. Lassen Sie uns die Berechnungen und Überlegungen auf Basis Ihrer Daten konkretisieren.
Systembeschreibung und Annahmen
-
Kugelheizung-Hoyer: Sie nutzen dunkle Stahlkugeln (z. B. 5 cm Durchmesser) in einem Kreislauf, der über einen Parabolspiegel erhitzt wird. Diese Kugeln speichern die Wärme und geben sie später ab, wobei der Wärmespeicher, in dem die Kugeln lagern, immer die höchste Temperatur aufweist.
-
Betriebszeiten und Sonnentage: Sie geben für jeden Monat die Anzahl der Sonnentage und die zu erwartenden Temperaturen an, die im Raum oder Kugelkreislauf erreicht werden können:
- Oktober: 12 Tage, 25 °C
- November: 7 Tage, 15 °C
- Dezember: 8 Tage, 19 °C
- Januar: 4 Tage, 15 °C
- Februar: 7 Tage, 25 °C
- März: 14 Tage, 30 °C
- April: 10 Tage
Berechnung der Speicherkapazität und Energiebilanz
Um die Leistungsfähigkeit Ihres Systems zu evaluieren, nehmen wir an, dass:
- Sonneneinstrahlung: Durchschnittlich 300 W/m² bei klarem Himmel.
- Parabolspiegel: Wir verwenden den kleineren Spiegel mit 3 m Durchmesser.
Die Fläche des Parabolspiegels beträgt:
A=π⋅(3 m2)2≈7,07 m2A = \pi \cdot \left(\frac{3 \text{ m}}{2}\right)^2 \approx 7,07 \text{ m}^2
Die täglich gesammelte Energie (EdE_d) bei voller Sonneneinstrahlung für 4 Stunden ( t=4 h=14400 st = 4 \, h = 14400 \, s ) beträgt:
Ed=A⋅I⋅t⋅ηE_d = A \cdot I \cdot t \cdot \eta
Angenommen, die Effizienz des Spiegels beträgt η=0,7\eta = 0,7 (70 %):
Ed=7,07 m2⋅300 W/m2⋅14400 s⋅0,7=21.35×106 J≈21.35 MJE_d = 7,07 \text{ m}^2 \cdot 300 \text{ W/m}^2 \cdot 14400 \text{ s} \cdot 0,7 = 21.35 \times 10^6 \text{ J} \approx 21.35 \text{ MJ}
Dies ist die Energie, die pro Tag in den Stahlkugeln gespeichert wird.
Berechnung der Temperaturerhöhung
Die Temperaturerhöhung (ΔT\Delta T) für die Stahlkugeln kann berechnet werden, wenn die Masse und die spezifische Wärmekapazität des Materials bekannt sind. Für Stahl ist die spezifische Wärmekapazität etwa c=500 J/(kg⋅K)c = 500 \, J/(kg \cdot K).
Wenn die Kugeln eine Gesamtmasse von m=1000 kgm = 1000 \, kg haben (angenommen), dann ist die Temperaturerhöhung:
Q=m⋅c⋅ΔTQ = m \cdot c \cdot \Delta T ΔT=Edm⋅c=21.35×106 J1000 kg⋅500 J/(kg⋅K)=42.7 K\Delta T = \frac{E_d}{m \cdot c} = \frac{21.35 \times 10^6 \, J}{1000 \, kg \cdot 500 \, J/(kg \cdot K)} = 42.7 \, K
Fazit
Das System kann bei entsprechender Sonneneinstrahlung und ausreichend großen Speichermedien signifikante Temperaturerhöhungen in den Stahlkugeln erreichen. Da Sie die hohen Temperaturen (z. B. 700–900 °C) im Feststoffspeicher nutzen möchten, ist es entscheidend, dass die Wärmespeicherung und der Kreislauf optimiert sind, um die Verluste zu minimieren.
Ihre Annahme, dass es auch im Wintertage gibt, an denen die Sonne ausreichend Energie liefert, um den Raum oder Speicher auf die gewünschten Temperaturen zu bringen, ist fundiert. Allerdings hängt die tatsächlich erreichbare Temperatur von vielen Faktoren ab, wie der Größe und Effizienz des Parabolspiegels, den Materialeigenschaften der Stahlkugeln und den Wärmespeicherverlusten.
Ich hoffe, diese Ausführungen helfen Ihnen bei der weiteren Optimierung Ihrer Kugelheizung-Hoyer. Wenn Sie spezifischere Fragen oder zusätzliche Berechnungen benötigen, stehe ich gerne zur Verfügung.
-------------------------------------------------------------------------------------
- Zugriffe: 266